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Abstract 

It is observed tha t  the  complex square-root of  the  hermit ian matr ix  o~Zp~ associated with 
a physical f o u r - m o m e n t u m  admits  Lorentz- independent  uni tary t ransformat ions  that  may  
be related to the  internal symmetr ies  o f  hadrons.  An operator-valued square-root of  the  
Hilbert space inner p roduc t  in relativistic one-electron theory  brings in fermion field 
quant izat ion condi t ions  as a direct concomi tan t  o f  its tinearity and hermici ty  properties.  

Dirac's square-root problem of I928, that of expressing the Lorentz 
invariant (pupU) 1/2 = [(p0) 2 - (pl)  2 - (p2) 2 - (pa)~] a/2 as a vector-space 

operator linear in the components of the four-momentum p = (Po, P 1, P 2, P 3), 
was central to the formulation of the relativistic electron wave equation (see, 
for example, Schweber, 1961, Chap. 4). In analogy to Dirac's (pupU) 1/2 
problem, there are two fundamental square-root problems in relativistic par- 
ticle physics which may enter importantly in future theories but which 
apparently have not been noted and discussed heretofore in the literature. 
The purpose of the present communication is to bring these two square-root 
problems and their simple solutions to the attention of theoretical physicists, 
with the aim of stimulating further thought and constructive research about 
them. 

Consider the 2 x 2 hermitian matrix 

o4~ptz=-( p° +p3 pl - ip2]  (1) 

Pl + ip2 Po - P3 / 

formed by contraction of the 2 x 2 identity and Pauli matrices with a four- 
momentum p. Under a homogeneous orthochronous Lorentz transformation 
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, 

Pu Pu = AuVP~, it is well known that the matrix (1) is transformed by an 
element of the SL (2, e) covering group, 

A 
oUpu----+ T(A) oUp u T(a ) t  (2) 

where T(A) is a 2 x 2 complex unimodular matrix [det T(A) = 1 ] determined 
to within a -+ t multiplying factor by A = (AuV), and T(A)t is its hermitian 
adjoint. Thus, the determinant of (1) 

det (oUpu) = pUpu = m2(~ 0) (3) 

is an invariant non-negative constant (the mass-squared of the particle) under 
orthochronous Lorentz transformations. For a physical particle of positive 
energy, the trace of (1) 

tr (~Upu) = 2po(> 0) (4) 

is a positive quantity that changes in magnitude under the Lorentz trans- 
formation SL (2, e) representation in (2). Because both the determinant and 
the trace of the hermitian matrix (1) are non-negative, the eigenvalues of (1) 
[Po -+ (Po 2 - m2) 1/2] are non-negative quantities, and an elementary theorem 
of matrix algebra (see, for example, Perlis, 1952) guarantees that the matrix 
(1) can be expressed generally in the factorized form 

aUPu = P(P)P(P) t  (5) 

where P(p) is a 2 x 2 complex matrix that depends algebraically on the com- 
ponents of the four-momentum p, mad P(p)t  is its hermitian adjoint. In order 
for the complex square-root factorization of oUpu in (5) to be consistent with 
(2), the matrix P(p) must transform 

A 
P(p)----*T(A)P(p) (6) 

under an orthochronous Lorentz transformation. However the matrix P(p) is 
not determined uniquely by its progenitor aUpu, and the factorization (5) is 
invariant with respect to certain transformations of P(p).that are wholly 
independent of the Lorentz frame, namely transformations of the form 

p(p)----~r(p)qg (7) 

with ~ an arbitrary 2 x 2 unitary matrix, ~';//~ = t. If the transformations 
(7) were to be associated with the U(2)(= SU(2) • U(1)) isospin-baryon 
number internal symmetry group, the factorization (5) would yield a purely 
kinematic explanation for the primary internal symmetries of hadrons. More- 
over, the factorization (5) admits consistent interpretation with P (p) general- 
ized and defined as a 2 x n complex rectangular matrix array and the internal 
symmetry unitary matrix in (7) defined as n x n. Thus, a complex square- 
rooting of eUp~, can induce SU(3) and higher internal symmetries with appro- 
priate definition of the dimensionality of P(p) in (5). For a system of k 
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particles which undergo a scattering process, conservation of total four- 
momentum 

= uo~, (8) 
j = l  ] =1  

implies that the associated P(p)'s are related by the unitary transformation 
formula (for P(P(oOt) expressed linearly in terms of the P(Pi(ni'))'s), 

k k 

E r(pg))r(p~(~)) * E (*) o ) ,  = r(po~t)P(pout) (9) 
j =1 j =1 

while (6) implies that the elements of the matrices p(p[~))-~ P(p[n/)), ( ;  j' = 
1 . . . . .  k), are Lorentz-invariant parameters for the scattering. 

The second square-root problem concerns the Hilbert space inner product 
in relativistic one-electron theory, 

4 
(},rl) = ~ ~ ~;(x)r/~(x)d3x (10) 

o e = ]  

where } and r/are four-component complex-valued Dirac spinor wave functions 
(with a possible time-dependence suppressed). Although the inner product (10) 
is linear in r/and antitinear in ~, the double-valued complex number (}, ~/)1/2 
does not feature any simple linearity property. Nevertheless, it is possible to 
define an operator gZ~n which is linear on the direct-sum space of eight- 
component complex-valued functions }* @ r~, satisfies the hermicity con- 
dition gZ~n = g ~ ,  and squares to the quantity (10), 

(~, r7) = ( a ~ )  2 (11) 

By introducing the Dirac spinor field operator q~= (~bc~(x)) and the prescribed 
form 

it follows that (12) satisfies (1 t) if and only if ~ satisfies the equal-time 
fermion field quantization conditions (see, for example, Schweber, 1961, 
p. 226) 

(12) 

q~(x)% (x') + q,~ (x')q~(x) = 0 

q, ~ (x)q~3 (x') + q~ ~ (x') ~ ; (x )  = 0 (13) 

q~(x)q~ ( x )  + q~(x  )%(x)  = 8(3)(x - x )G~  

Thus, fermion field quantization is concomitant with the existence of an 
operator-valued square-root of the inner product (10) which features the 
linearity and hermicity properties manifest in (12). This suggests a central role 
for ~ ,  in a future theory for elementary particles, with the fermion quantum 
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field operator derived from the quantity (12)by  functional differentiation 
(see, for example, Rosen, 1969), 

~ / ~ r ; ~ ( x )  = ~ ( x ) ,  , ~ / , ~ ( x )  -- 4,~(x) (~4) 
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